If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+6X-210=0
a = 1; b = 6; c = -210;
Δ = b2-4ac
Δ = 62-4·1·(-210)
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{219}}{2*1}=\frac{-6-2\sqrt{219}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{219}}{2*1}=\frac{-6+2\sqrt{219}}{2} $
| 4(x-12)=-36 | | 13+3=-2(7x-8) | | 6+2(x-4)=10 | | 3/4-5/7=m | | 234/13=198/x | | X^2+2x=216 | | x-7/2+1=2x-13/2 | | 3(2x+6)=-25+13 | | (2/3b)+5=(20-b) | | 7/263=x | | (x+4)(x-6)=x2+()-24 | | -2=1/2x=11 | | 13/234=x/198 | | 6-(4n-1)=3-5n | | 4/5x+16=x-20 | | 11+c=16.50 | | 9x-21÷2=3x | | 56/a=-3.5,a=0 | | 56=3x=-91 | | 4x9=4x(3x3) | | 16+c=17.50 | | 5x+1.1)=18.5 | | 2x-31=x+17 | | 15x-31=2x+8 | | 15-6x=40 | | 5b^2+29b+25=5 | | 3n-15=9-2n | | (4y+1)=4 | | 2^4x=64 | | 8x-14/5=7x | | X-1/3x^2-x-30+1/5x^2+13x-6=2x/15x^2-56x+20 | | $20+$4x$14x$20+$4x=$14x |